波士顿激光治疗近视

来源:配镜咨询网 时间:2023-10-18 12:06:05 责编:配镜顾问 人气:

美国专利 治疗近视的眼镜

波士顿激光治疗近视

返回结果

脉络膜增厚

用于治疗近视的眼镜片抽象

公开了一种眼镜,其包括眼镜框架和安装在框架中的一对眼镜片。所述透镜包括分布在每个透镜上的点图案,所述点图案包括以1或更小的距离间隔布置的点阵列,每个点的最大尺寸为0.3或更小,所述点图案包括自由的透明孔。最大尺寸大于1的点,透明孔与这副眼镜的佩戴者的视轴对准。

图片(16)

分类

G02C7/061焦距逐渐变化的眼镜片

查看8更多分类

US10571717B2

美国

下载PDF

查找现有技术

类似

发明者杰伊·内兹(JNiz)詹姆斯·库琴贝克莫琳·尼兹(MNiz)现任受让人华盛顿大学

全球应用

2017年MXCN认证机构非盟WOKRSGJ.PEPTW2018年我们2019年PH值2020年我们

应用程序US16/143,707事件

2016-08-01

US201662369351P的优先权

2018-09-27

华盛顿大学提出的申请

2019-01-31

US20190033619A1的公开

2020-02-25

申请被批准

2020-02-25

US10571717B2的公开

状态

活性

2037-07-31

预期到期

显示所有活动

信息专利引用(86)非专利引用(7)被引用(8)法律事件类似文件优先权及相关申请外部链接美国专利商标局USPTO分配太空网全球档案讨论

描述

交叉引用

本申请是2017年7月31日提交的PCT申请序列号PCT/US2017/044635的继续,该申请要求美国临时申请S的优先权。2016年8月1日提交的第62/369,351号和2017年5月8日提交的第62/502,995号。

发明领域

本发明的特征在于用于治疗近视的眼科镜片,形成这种镜片的方法,使用这种镜片的方法以及监测这种镜片的功效的方法。

背景

眼睛是一种光学传感器,其中来自外部光源的光通过一个透镜聚焦到一系列依赖于波长的光电传感器的视网膜表面上。眼透镜可以采用的各种形状中的每一个都与焦距相关联,在该焦距下,外部光线被最佳或近乎最佳地聚焦,以在视网膜表面上产生与眼睛所观察到的外部图像相对应的倒像。处于最佳状态或接近最佳状态的各种形状的眼镜片,都将聚焦在距眼睛一定距离范围内的外部物体发出或反射的光线聚焦,而不太理想地聚焦,或无法聚焦超出该距离范围的对象。

在正常视力的个体中,眼睛的轴向长度或从晶状体到视网膜表面的距离对应于近距离物体的最佳聚焦的焦距。视力正常的人的眼睛将远处的物体聚焦在没有神经输入的肌肉上,而肌肉则通过施加力来改变眼镜片的形状,这一过程称为“调节”。由于调节,正常人会将较近的附近物体聚焦。

但是,许多人患有与眼长有关的疾病,例如近视(“近视”)。在近视个体中,眼睛的轴向长度比聚焦远距离物体而无调节所需的轴向长度长。结果,近视个体可以清楚地看到附近的物体,但是远处的物体却是模糊的。尽管近视个体通常能够适应,但他们可以聚焦物体的平均距离比正常人要短。

通常,婴儿是远视眼出生的,其眼睛长度短于无需调节即可对远处物体进行最佳或近乎最佳聚焦所需的眼睛长度。在眼睛的正常发育过程中,称为“正视化”,相对于眼睛的其他尺寸,眼睛的轴向长度会增加到一个长度,该距离可提供对近距离物体的最佳聚焦而无需调节。理想情况下,随着眼睛长大到最终的成年大小,生物学过程可以保持相对最佳的眼睛长度与眼睛的大小。然而,在近视个体中,眼睛的轴向相对于整个眼睛大小的相对轴长在发育过程中继续增加,超过了可以提供远处物体近乎最佳聚焦的长度,导致近视变得越来越明显。

据认为,近视受行为因素以及遗传因素影响。因此,可以通过解决行为因素的治疗设备来减轻近视。例如,在USP.Si。,V.5,N.4,N.6,N.4,N.4,N.6,N.4,N.6,N.6,N.5,N.6,N.3,N.6,N.3,N.6,N.5,N.6,N.3中描述了用于治疗与眼长有关的疾病的治疗装置。第2011/0313058A1号。

概要

公开了眼镜和隐形眼镜,它们减少了视网膜中导致眼长增长的信号。使用聚碳酸酯或Tivx镜片毛坯制造示例性实施例,该聚碳酸酯毛坯或Tivx镜片毛坯已经通过施加透明液态塑料突起的图案进行了处理,该突起通过紫外线被硬化并结合到镜片上。每个透明塑料突起的折射率都类似于其所结合的下面的聚碳酸酯,因此在突起的位置,它和下面的透镜充当单个光学元件。这种光学元件的阵列表现为高度像差的透镜阵列,将由该阵列透射的光在所有方向上相当均匀地分散。结果是视网膜图像的对比度降低。

在一个示例中,视网膜上的图像由正常聚焦的图像组成,其平均强度为不具有突起阵列的透镜所产生的平均强度的74%。叠加在聚焦图像上的是均匀视网膜照明的背景,等于正常聚焦图像平均亮度的25%。

对于这些眼镜,与通常用于校正(但不处理)屈光不正的图像相比,聚焦图像的对比度降低。对比度降低的确切数量取决于所传输图像中暗区和亮区的相对数量。对于上面的示例,在24%的光均匀分散的情况下,最大对比度降低将是48%,其中对比度定义为亮度差/平均亮度。实验表明,这种降低的对比度与负责控制眼长增长的机制有关,对眼睛的生理有重要影响。

本发明的各个方面总结如下:

通常,在第一方面,本发明以一副眼镜为特征,该眼镜包括:眼镜架;以及眼镜架。以及安装在框架中的一对眼镜片。透镜包括分布在每个透镜上的点图案,该点图案包括以1或更小的距离间隔开的点阵列,每个点的最大尺寸为0.3或更小。

眼镜的实施方式可包括以下特征和/或其他方面的特征中的一个或多个。例如,每个点的最大尺寸可以为0.2或更小(例如,0.1或更小,0.05或更小,0.02或更小,0.01或更小)。在一些实施例中,每个点的大小基本相同。点可以间隔开0.8或更小(例如0.6或更小,0.5或更小,0.4或更小,0.35或更小)。点可以布置在正方形网格,六边形网格,另一个网格上,或者以半随机或随机图案布置。点可以以规则的间隔,例如0.55,0.365或0.24间隔开。可选地,点间距可以根据点距透镜中心的距离而变化。例如,

该点图案可以包括没有最大尺寸大于1的点的透明孔,该透明孔与这副眼镜的佩戴者的观察轴对准。透明孔的最大尺寸(例如直径)可以为2毫米或更大(例如3毫米或更大,4毫米或更大,5毫米或更大,6毫米或更大,7毫米或更大,8毫米或更大)。大于等于1.5厘米(例如1.5厘米或更小,1.4厘米或更小,1.3厘米或更小,1.2厘米或更小,1.1厘米或更小,1.0厘米或更小)。透明孔可以是基本上圆形的或类似的形状,例如八边形,正方形或其他多边形。

在一些实施例中,点是在相应透镜的表面上的突起。突起可以由透明材料形成。在某些情况下,透明材料是透明的和/或无色的。替代地,或另外地,至少一些透明材料可以被着色(例如,用吸收红色波长的染料)。透明材料可具有与透镜材料基本相同的折射率。突起可以是基本球形或半球形的。

在某些实施例中,这些点是在相应透镜的表面上的凹槽。

点可以是每个透镜相对表面之间的夹杂物。

镜片可以是透明镜片。在一些实施例中,镜片是有色镜片。

点图案可以使通过点图案观看的对象的图像对比度降低至少30%(例如,降低至少35%,降低至少40%,降低至少45%,降低至少50%,降低与通过透明光圈观察到的物体的图像对比度相比,至少要降低55%,至少要降低60%)。在一些实施例中,透镜具有屈光力,以通过透明光圈将佩戴者的轴上视力矫正为20/20或更好(例如20/15),并且通过点将佩戴者的周边视力的至少一部分矫正为点。镜片将佩戴者的视力校正为20/25或更高,20/30或更高,20/40或更高等。

在另一方面,本发明的特征在于一种制造眼镜的方法,该方法包括:在镜片的与点图案相对应的表面上沉积离散部分的材料;固化沉积的材料,以在形成点图案的透镜表面上提供突起。可以使用喷墨打印机沉积材料。可以使用辐射(例如,紫外线辐射)固化沉积的材料。

通常,在另一方面,本发明的特征在于为佩戴者定制的一副眼镜,包括:眼镜架;以及安装在框架中的一对眼科镜片,所述镜片具有将佩戴者的轴上视力校正到20/20或更高的光焦度,所述镜片包括分布在每个镜片上的点图案,所述点图案包括点阵列布置成使得对于佩戴者的至少一部分周边视力,镜片将佩戴者的视力校正为20/25或更好,并且与轴上图像对比度相比将图像对比度降低至少30%。眼镜片的实施例可以包括其他方面的一个或多个特征。

总体上,在另一方面,本发明的特征在于为佩戴者定制的一副眼镜,包括:眼镜架;以及安装在框架中的一对眼科镜片,所述镜片具有将佩戴者的轴上视力校正为20/20或更高的屈光力。眼镜包括分布在每个镜片上的光学扩散器,该光学扩散器被配置为使得对于佩戴者的周围视力的至少一部分,镜片将佩戴者的视力校正为20/40或更高,20/30或更高,或者与轴上图像对比度相比,图像对比度降低20/25或更高,并且图像对比度至少降低30%。

眼科镜片的实施例可包括以下特征和/或其他方面的特征中的一个或多个。例如,光学漫射器可包括层压在每个透镜的表面上的膜。每个透镜可包括无光孔,该无光孔的最大尺寸大于1,该光孔与这副眼镜的佩戴者的视轴对准。

总体上,在另一方面,本发明的特征在于一种眼科镜片,其包括:两个相对的曲面,这些曲面共同具有屈光力以将佩戴者的轴向视力校正为20/20或更好;以及以及分布在每个镜片上的点状图案,该点状图案包括间隔开的点的阵列,这些点布置成使得对于佩戴者的至少一部分周边视力,镜片将佩戴者的视力校正为20/25或更高,并减小图像与同轴图像上的对比度相比,至少有30%的对比度,该点阵图形包括一个清晰的光圈,没有与佩戴者的观看轴对齐的点。

眼科镜片的实施例可包括以下特征和/或其他方面的特征中的一个或多个。例如,眼镜片可以是眼镜片。替代地,在一些实施例中,眼科镜片是隐形眼镜。

总体而言,另一方面,本发明的特征在于一种监测和阻止人的近视进展的方法,包括:测量一段时间内人脉络膜厚度的变化;以及为该人提供眼科镜片,该眼科镜片与轴上图像对比度相比降低了该人的周边视觉中的图像对比度。

该方法的实现可以包括以下特征和/或其他方面的特征中的一个或多个。例如,眼科镜片可以设置在前述方面的眼镜中。或者,可以将眼科镜片设置为隐形眼镜。在一些实施方式中,测量变化包括使用光学相干断层扫描(OCT)测量人脉络膜的厚度。

在其他优点中,所公开的实施例的特征在于眼镜,该眼镜包括减少视网膜中负责两只眼睛的镜片上的眼长增长的信号的特征,而不会将用户在两只眼睛中的轴上视力减小到对用户造成破坏的程度。例如,提供一种点图案,该点图案适度地模糊了佩戴者的周围视觉,同时允许通过透明光圈进行正常的轴向观察,从而使佩戴者能够全天候使用。与涉及交替使用不同副眼镜的方法相比,所公开的实施例还可以仅使用一对副眼镜为用户的两只眼睛提供治疗益处。

此外,点图案对于其他人而言可能是不大明显的,特别是在点图案清晰无色和/或使用隐形眼镜的情况下。点图案的微妙之处可能会导致某些佩戴者(尤其是儿童)更加一致地使用它们,否则他们可能在每天(例如,在学校或同龄人之间)使用更显眼的设备时保持自我意识。

附图的简要说明

图。1A展示了一副用于治疗近视眼的眼镜片。

图。1B在图1所示的眼科镜片上显示一个点状图案图。1A。

图。2图1示出了使用示例性眼科镜片治疗近视经历的对比度降低。

图。3A图1示出了用于在眼镜片上形成点图案的喷墨打印系统。

图。3B图3是示出使用图1所示的系统制造点图案的方法中的步骤的流程图。图。3A。

图。3C图1示出了使用喷墨印刷方法形成点图案的印刷模板。图。3B。

图。3D图1示出了用于在喷墨打印系统中定位多个透镜的夹具的俯视图。

图。4图5是示出示例性眼镜片上的点图案的照片(A)-(C)。

图。5是显示脉络膜厚度的眼睛的光学相干断层扫描(OCT)图像(A)-(B)。

图。6是显示脉络膜厚度的OCT图像(A)-(D)。

图。7图5是示出受试者的治疗前后的相对脉络膜厚度与视网膜位置的函数的图。

图。8是一张照片,显示原型I镜头中使用的点图案。

图。9图是比较使用原型I镜片进行的研究和初步研究的结果的图。绘制了轴向长度差测量的时间进程。

图。10是显示原型II镜头中使用的点图案的照片。

图。11是显示原型III镜头中使用的点图案的照片。

图。12是一个柱状图,比较了来自初始研究(“第一扩散器”),原型III镜片(“新扩散器”)和对照组(“无扩散器”)的受试者在180天后屈光度的变化。

图。13图1是用于在隐形眼镜上形成点图案的激光系统的示意图。

无花果14A-B是隐形眼镜的点图案的例子。

图。15A是带点图案的隐形眼镜的照片。

图。15B是点状眼镜镜片的照片。

详细说明

参考图。1A公开了一种减少近视的眼镜100,该眼镜100允许同时治疗两只眼睛而基本不损害清晰视力。此外,眼镜足够坚固且不起眼,以使佩戴者能够进行相同的日常活动而不会使眼镜失效并且不会对其外观产生自我意识,这是特别希望的,因为眼镜通常用于防止儿童拉长眼睛。

近视还原眼镜100由一对帧中的101和眼科镜片110一和110安装在所述帧。眼科镜片110一和110分别具有清净孔径120一和120,分别由降低对比度区域包围130一和130,分别。清除孔120一和120被定位成与穿用者的重合在轴观看位置,而降低对比度区域130一和130对应于佩戴者的周边视力。也指图。1B,减小对比度区域130一和130由点阵列的140,其通过散射透过这些区域光通过到佩戴者的眼睛减少佩戴者的周边视野的对象的对比度。

透明孔的大小和形状可能会有所不同。通常,通光孔为佩戴者提供了视锥,可以对其视力进行最佳矫正(例如,调整为20/15或20/20)。在一些实施例中,孔的最大尺寸(在x平面中)在约0.2(例如,约0.3或更大,约0.4或更大,约0.5或更大,约0.6或更大)的范围内,约0.7毫米或更大,约0.8毫米或更大,约0.9毫米或更大)到约1.5厘米(例如,约1.4厘米或更小,约1.3厘米或更小,约1.2厘米或更小,约1.1厘米或更小,1厘米以下)。孔是圆形的,例如图。1A,该尺寸对应于圆的直径(即Ax=A),但是非圆形(例如,椭圆形,多边形,Ax≠A)孔径也是可能的。

透明孔可以对着大约30度或更小(例如,大约25度或更小,大约20度或更小,大约15度或更小,大约12度或更小,大约10度或更小,大约9度)的立体角。在观看者的视场中,例如小于或等于约8度,小于或等于8度,小于或等于7度,小于或等于6度,小于或等于5度,小于或等于4度,小于或等于3度。相对于水平和垂直视平面的立体角可以相同或不同。

该点由突起的阵列,每个阵列的透镜的表面上形成110一个和110。突起由具有与下面的透镜相似的折射率的光学透明材料形成,该折射率对于聚碳酸酯是1.60。例如,在其中透镜由聚碳酸酯形成的实施例中,突起可以由具有与PC相似的折射率的聚合物形成,例如由光活化的聚氨酯或基于环氧树脂的塑料形成。除了PC之外,镜片本身也可以由烯丙基碳酸二乙二醇酯塑料,氨基甲酸酯基单体或其他耐冲击单体制成。或者,可以用折射率大于1.60的较稠密的高折射率塑料之一制成镜片。

在一些实施例中,突出材料被选择为具有在0.1以内的折射率(例如,在0.09以下,0.08以下,0.07以下,0.06以下,0.05以下,0.04以下,0.03以下,透镜材料的折射率的0.02以下,0.01以下,0.005以下,0.002以下,0.001以下(例如,在可见光范围内的1个以上的波长下测得)。

突起的尺寸和形状被设定为使得点散射入射光以减小通过减小的对比度区域观察到的物体的对比度。突起可以是大致球形,椭圆形或不规则形状。通常,突起应具有尺寸(例如直径),如图。1B),足以散射可见光,但又足够小,以至于穿着者在正常使用过程中无法分辨。例如,突起的尺寸(在x平面中测量)可以在大约0.001或更大(例如,大约0.005或更大,大约0.01或更大,大约0.015或更大,大约0.02)的范围内。或更多,约0.025毫米或更多,约0.03毫米或更多,约0.035毫米或更多,约0.04毫米或更多,约0.045毫米或更多,约0.05毫米或更多,约0.055毫米或更多,约0.06毫米或更多约0.07毫米或更大,约0.08毫米或更大,约0.09毫米或更大,约0.1毫米)到约1毫米或更小(例如,约0.9毫米或更小,约0.8毫米或更小,约0.7毫米或更小)约0.6或更小,约0.5或更小,约0.4或更小,约0.3或更小,约0.2或更小,约0.1)。

注意,对于较小的突起,例如具有与光的波长相当的尺寸(例如,0.001至约0.05),可以将光散射视为罗利散射或米氏散射。对于较大的隆起,例如约0.1或更大,光散射可能是由于隆起的透镜效应,例如由于曲率半径很小的透镜聚焦到用户视网膜前方的某个点。在这种情况下,当来自每个突起的光到达用户的视网膜时,它已经从其焦点上基本上发散了并且不能被用户分辨为图像。

通常,突起的尺寸在每个透镜上可以相同或可以变化。例如,尺寸可以根据隆起的位置而增加或减小,例如,如从透明孔中测量的和/或距透镜的边缘的距离的函数。在一些实施例中,突起尺寸随着距透镜中心的距离的增加而单调变化(例如,单调增加或单调减小)。在某些情况下,尺寸的单调增加/减少包括根据与镜片中心的距离来线性改变突起的直径。

显示的隆起图。1B排列在正方形网格上,在每个方向上均等间隔。这由在方向上的D和在x方向上的Dx表示。通常,点之间的间隔使它们共同为观察者的周围提供足够的对比度降低,以减少近视。通常,较小的点间距将导致更大的对比度降低(假设相邻点不重叠或合并)。通常,Dx和D在约0.05的范围内(例如,约0.1或更大,约0.15或更大,约0.2或更大,约0.25或更大,约0.3或更大,约0.35或更大,约0.4或更多,约0.45毫米或更多,约0.5毫米或更多,约0.55毫米或更多,约0.6毫米或更多,约0.65毫米或更多,约0.7毫米或更多,约0.75毫米或更多)至约2毫米(例如,约1.9毫米或更小,约1.8毫米或更小,约1.7毫米或更小,约1.6毫米或更小,约1.5毫米或更小,约1.4毫米或更小,约1.3毫米或更小,约1.2毫米或更小,约1.1毫米或更小,约1毫米或更小,约0.9毫米或更小,约0.8毫米或更小)。作为示例,点间距可以是0.55,0.365或0.240。

虽然隆起显示图。1B它们在x和方向上以相等的间隔布置,更一般地,在每个方向上的间隔可以不同。此外,突起可以排列在非正方形的网格中。例如,可以使用六边形网格。非规则阵列也是可能的,例如,可以使用随机或半随机点放置。在随机图案的情况下,给出的尺寸将是点在X和Y方向上的平均间隔。

虽然点被描绘为在图。1B,更一般而言,点可以具有其他形状。例如,例如在椭圆形点的情况下,点可以在一个方向(例如,在x方向或方向)上伸长。在一些实施例中,点的形状是随机的。

据认为,从场景入射在镜片上降低对比度区域光130一和130点之间的距离有助于场景在用户视网膜上的成像,而来自场景的光入射到点上则没有。而且,入射在点上的光仍然透射到视网膜,因此具有降低图像对比度而基本上不降低视网膜上的光强度的效果。因此,据信用户的外围视场中的对比度降低的量与点所覆盖的对比度降低的区域的表面积的比例相关(例如,大约成比例)。通常,点占据至少10%(例如,20%或更多,30%或更多,40%或更多,50%或更多,例如90%或更少,80%或更少,70%或更少,60%或减小的对比度区域的面积(如在x平面上测量)以下)130一个和130羽

通常,点图案降低了佩戴者周围视觉中物体图像的对比度,而不会显着降低该区域中观看者的视敏度。在此,周边视觉是指在透明光圈的视野之外的视野。相对于使用该图像查看的图像对比度,这些区域中的图像对比度可以降低40%或更多(例如45%或更多,50%或更多,60%或更多,70%或更多,80%或更多)。确定的透明光圈。可以根据每种情况的需要设置对比度降低。据信典型的对比度降低将在约50%至55%的范围内。低于50%的对比度降低可用于非常轻度的情况,而倾向更高的受试者可能需要高于55%的对比度降低。

此处的对比度是指同一视野内两个物体之间的亮度差异。因此,对比度降低是指该差异的变化。

对比度和对比度降低可以通过多种方式进行测量。在一些实施例中,可以基于在受控条件下通过透镜的透明光圈和点图案获得的标准图案的不同部分(例如,黑色和白色正方形的棋盘)之间的亮度差来测量对比度。

替代地或另外地,可以基于镜片的光学传递函数(OTF)来确定对比度降低(参见,例如,h://www../jhw//18%20EELE582_S15_OTFMTF.f)。对于OTF,指定了用于传输刺激的对比度,其中明暗区域以不同的“空间频率”进行正弦调制。这些刺激看起来像交替的亮条和暗条,条之间的间距在一定范围内变化。对于所有光学系统,具有最高空间频率的正弦变化刺激的对比度透射率最低。描述所有空间频率的对比度传输的关系是OTF。可以通过对点扩展函数进行傅里叶变换来获得OTF。

如果测量结果冲突,则首选OTF技术。

在一些实施例中,可以基于由点覆盖的透镜的面积与透明孔口的面积之比来估计对比度。在此近似值中,假定击中点的所有光在整个视网膜区域内均匀分散,这减少了图像较亮区域中可用的光量,从而向较暗区域添加了光。因此,可以基于通过透明光圈和透镜的点图案进行的透光率测量来计算对比度降低。

一般地,眼用透镜110一和110可以是透明的或着色的。即,透镜对于所有可见波长可以是光学透明的,看起来是透明的和/或无色的,或者可以包括看起来是彩色的光谱滤光片。例如,眼科镜片可包括滤光器,该滤光器减少透射到佩戴者的红光的量。据认为,过度刺激人眼(尤其是儿童)中的L视锥细胞可能会导致眼睛视线变长和近视。因此,使用眼科镜片对红光进行光谱过滤可以进一步减轻佩戴者的近视。

可以通过在镜片的表面上涂膜来提供光谱过滤。可以通过将材料物理沉积到镜片表面上,在表面上涂覆一层材料或将预成型的薄膜层压到表面上来施加薄膜。合适的材料包括吸收滤光材料(例如染料)或提供干涉滤光的多层薄膜。在一些实施例中,可以通过在镜片材料本身中包括过滤材料和/或在用于形成突起的材料中包括过滤材料来提供光谱过滤。

参考图。2通过使用眼镜210在白色背景上观看黑色文本,示出了来自点图案的光谱过滤和对比度降低的效果。文本的白色背景由于眼镜对红色波长的过滤而呈现绿色外观。图像对比度是在清晰孔不受影响220一和220,但在观看者的视觉帧别处降低。

通常,可以通过多种方式由透镜形成点,包括UVLED直接印刷到基板,移印,热压印和丝网印刷技术。在一些实施例中,通过将可固化材料喷墨到空白眼科镜片的表面上,然后固化该材料以设置点图案来形成点。参考图。3A喷墨和固化系统300包括喷墨打印机320和与打印机通信的计算机310。打印机320包括控制器330,储存器340,喷墨打印头350和台架360。台架360支撑透镜301并将透镜相对于打印头350定位。340水库存放未固化的材料以进行喷墨。适用于喷墨的可固化材料的实例包括各种可通过光聚合而交联在一起的可商购的专有单体和低聚物。

在操作期间,打印头350从储存器340接收未固化的材料。

台架360相对于打印头350移动透镜301(如箭头361所示),同时打印头350将未固化的材料302的液滴朝向透镜喷射。在此过程中,载物台和/或打印头都可能是移动部件。墨滴量取决于所需的突起尺寸。液滴体积可以在0.0013至0.0153的范围内(例如,约0.0023,约0.0033,约0.0043,约0.0053,约0.0063,约0.0083,约0.010毫米3,约0.0123)。在与镜片表面接触时,液滴润湿表面,形成未固化的突起305。替代地,在一些实施例中,在致动器相对于透镜移动打印头的同时,平台360保持静止。

系统300还包括紫外线灯370。台架360将透镜定位在灯370附近,使得灯可以固化沉积的材料,从而形成最终的突起。合适的UV灯的示例包括在360-390的波长范围内发射的LED。

控制器330与容器340,打印头350,台架360和UV灯370连通,并且协调每个的操作以促进液滴的印刷和固化。具体地,控制器330控制打印头350与台架360之间的相对运动,喷墨液滴喷射频率和液滴体积,从而系统300在透镜301上形成期望的点图案。控制器330还可控制未固化材料的温度(例如,通过与储存器340相关联的加热器)或其他地方)以控制未固化材料的粘度。用户通过计算机310输入墨滴图案,该墨滴图案生成用于打印机的相应控制信号,并将该信号传送至控制器330。

可以使用市售的喷墨打印机。合适的喷墨打印机包括RDGA(加利福尼亚州欧文)和Miki(乔治亚州苏万尼)品牌的UVLED直接印刷底材打印机。

喷墨点图案允许眼保健专业人员以廉价和有效的方式为患者个性化点图案。参考图。3B通过序列380提供个性化眼镜,该序列380可以完全在眼保健专业人员的办公室执行。在第一步骤381中,眼保健专业人员例如通过使受试者屈光来确定患者的处方。该步骤确定在其上形成点图案的眼科镜片的屈光力。患者也可以像购买普通处方眼镜一样选择眼镜架。

在接下来的步骤382中,眼保健专业人员选择适合于患者的点图案。可以改变的点图案的参数包括,例如,点尺寸,点密度,透明光圈尺寸和形状以及透明光圈在透镜上的位置。根据周围视觉和清晰光圈角度范围内所需的对比度降低量,可以对每个参数进行个性化设置。示例性的点阵图显示在图。3C。该图案在比大多数镜片毛坯更大的区域上打印点,从而确保点图案完全覆盖了镜片表面。适用于生成图像的商业软件(例如MifOffi产品,如Vii,PwPi或W)可以与标准喷墨驱动程序软件结合使用,以生成用于喷墨打印机的控制信号。另外,眼保健专业人员可以使用定制软件将所选的图案参数输入到喷墨打印机的计算机中。